Modulation of differential transcription of tRNA genes through chromatin organization.

نویسندگان

  • Akhila Parthasarthy
  • Karumathil P Gopinathan
چکیده

In higher eukaryotes, tRNA multigene families comprise several copies encoding the same tRNA isoacceptor species. Of the 11 copies of a tRNA1Gly family from the mulberry silkworm Bombyx mori, individual members are differentially transcribed in vivo in the B. mori-derived BmN cell lines and in vitro in silk gland nuclear extracts. These genes have identical coding regions and hence harbour identical internal control sequences (the A and B boxes), but differ significantly in their 5' and 3' flanking regions. In the present study, we demonstrate the role of chromatin structure in the down-regulation of the poorly expressed copy, tRNA1Gly-6,7. Distinct footprints in the 5'-upstream region of the poorly transcribed gene in vitro as well as in vivo suggested the presence of nucleosomes. A theoretical analysis of the immediate upstream sequence of this gene copy also revealed a high propensity of nucleosome formation. The low transcription of tRNA1Gly-6,7 DNA was further impaired on assembly into chromatin and this inhibition was relieved by externally supplemented TFIIIC with an associated histone acetyltransferase activity. The inhibition due to nucleosome assembly was absent when the 5'-upstream region beyond -53 nt was deleted or entirely swapped with the 5'-upstream region of the highly transcribed gene copy, which does not position a nucleosome. Footprinting of the in vitro assembled tRNA1Gly-6,7 chromatin confirmed the presence of a nucleosome in the immediate upstream region potentially masking TFIIIB binding. Addition of TFIIIC unmasked the footprints present on account of the nucleosome. Our studies provide the first evidence for nucleosomal repression leading to differential expression of individual members from within a tRNA multigene family.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nuclear Architecture and Epigenetics of Lineage Choice

Differentiation is an epigenetic process which is installed by changes of transcriptional programs over successive cellular divisions. A number of studies have reported the effects of biochemical modifications of chromatin (DNA and chromatin proteins) on the regulation of transcription. Although, these studies are able to explain how transcription of a given gene is regulated (toward activation...

متن کامل

Identified Hybrid tRNA Structure Genes in Archaeal Genome

Background: In Archaea, previous studies have revealed the presence of multiple intron-containing tRNAs and split tRNAs. The full unexpurgated analysis of archaeal tRNA genes remains a challenging task in the field of bioinformatics, because of the presence of various types of hidden tRNA genes in archaea. Here, we suggested a computational method that searched for widely separ...

متن کامل

Yeast H2A.Z, FACT complex and RSC regulate transcription of tRNA gene through differential dynamics of flanking nucleosomes

FACT complex is involved in elongation and ensures fidelity in the initiation step of transcription by RNA polymerase (pol) II. Histone variant H2A.Z is found in nucleosomes at the 5'-end of many genes. We report here H2A.Z-chaperone activity of the yeast FACT complex on the short, nucleosome-free, non-coding, pol III-transcribed yeast tRNA genes. On a prototype gene, yeast SUP4, chromatin remo...

متن کامل

Cohesinopathy mutations disrupt the subnuclear organization of chromatin

In Saccharomyces cerevisiae, chromatin is spatially organized within the nucleus with centromeres clustering near the spindle pole body, telomeres clustering into foci at the nuclear periphery, ribosomal DNA repeats localizing within a single nucleolus, and transfer RNA (tRNA) genes present in an adjacent cluster. [corrected] Furthermore, certain genes relocalize from the nuclear interior to th...

متن کامل

P-209: Decreased Expression of Histone Acetyltransferase CDY1 Gene in Testis Tissue May Lead to Decreased Expression of Transition Protein (TNP) and Protamine (PRM) Genes,Causing Male Infertility

Background: Infertility is a complex medical problem. About 15% of couples are infertile, and male infertility being involved in roughly 50% of the cases. Among these, many cases are associated with a severe impairment of spermatogenesis. During the last stage of spermatogenesis (spermiogenesis), sperm chromatin endures complex modifications in which histones are lost and depositioned with tran...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Biochemical journal

دوره 391 Pt 2  شماره 

صفحات  -

تاریخ انتشار 2005